Math Foundations: The Magic of Math
 2018-1 hour presentation

Equals Mathematics

Presented by: Chris Cain, Ed. D. ccain@mhu.edu

Dr. Cain, Dr. Faulkner, and NCDPI

PISA (2012): Context

Program for International Student Assessment

USA ranked fourth in the OECD sample in per student spending

The share of students from disadvantaged backgrounds is within the average range of the OECD sample

PISA (2012): Results

Program for International Student Assessment

The USA average score was $27^{\text {th }}$ out of 34 countries*

26% of USA

 students scored below the baseline level of proficiency9\% of USA students scored within the top proficiency level
*of OECD participating countries

NAEP: 2015

National Assessment of Educational Progress

Percentage at or above Proficient

Grade 4

Grade 8

National Center for Educational Statistics, 2015

TIMSS

Trends in International Mathematics and Science Study

US Teachers

Learning terms and practicing procedures

Covers 80\% of tested topics

Mile wide, inch deep

How can I teach my students to get the answer to this problem?

Instructional focus

Pace

Curriculum

Teachers plan by asking...

Hong Kong, Singapore, Japan

Structured problem solving

About half the tested topics

Greater depth and coherence

How can I use this exercise to teach mathematics they don't already know?

International Research

TIMSS Video Studies

- 1995 Video Study
- Japan, Germany, US
- Teaching Style Implicated
- 1999 Video Study
- US, Japan, Netherlands, Hong Kong, Australia, Czech Rep.
- Implementation Implicated

Stigler \& Hiebert, 2004

Work Space

High Achieving Countries MAKE CONNECTIONS

United States TEACHES PROCEDURES

Structures and Connections

What is $4^{2} ?$

Procedure versus Structure/Connections
Make a square out of your 4 unit linear side

Work Space

Exponents and CONNECTIONS

Pythagorean Special Triangles Trigonometry

Connections

4^{2}

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Components of Number Sense Overview

What's the "Big Idea"?

Understanding and Instruction

We can only instruct our students as well as we understand the mathematics:

The better we understand the math, the better decisions we will make regarding what the student needs to achieve and how to instruct the student!

Knowing and Teaching

Elementary Mathematics (Liping Ma)

- Compared and contrasted the pedagogy of Chinese and American teachers
- Found that American teachers were much weaker in content and conceptual knowledge
- Found American teachers teach procedurally rather than being driven by the logic of the mathematics (implementation)
- Ma presented information through teacher responses to elementary math questions

Defining Issue in Implementation

...is the teacher's OWn

 understanding of Mathematics.Liping Ma (1999)

Problem \#1 Subtraction

$$
\begin{array}{r}
72 \\
-15 \\
\hline
\end{array}
$$

How would you approach this type of problem if you were teaching second grade?

Problem \#1

Subtraction with Regrouping

American Teachers - Procedural approach

- The "pedagogic insight "of the teachers
- Once the student can take a ten from the tens place and turn it into 10 ones, then they can address the problem correctly. Problem solved.
- Manipulatives suggested to explain this step only.
- Manipulatives sometimes used in a way that they did not actually demonstrate process of regrouping.

Problem \#1

Subtraction with Regrouping

Chinese Teachers - Decomposing and Composing a Higher Value Unit

- Pedagogical insight: implemented the package of critical information embedded in subtraction
- Saw this problem as connected to addition through composing and decomposing units
- Demonstrated multiple ways of regrouping
- Found the opportunity to explore the basics of our base ten system

15

- 8

$$
7
$$

15-8

Cain, Faulkner, \& Fanelli

Subtraction: Decomposition $7-4=3$

Minuend

- Is the first number in the subtraction problem.

Subtrahend

- Is the second number or the number that is being subtracted in the subtraction problem.

Difference

- Is the final answer after the subtrahend has been subtracted from the minuend.

Cain, Faulkner, \& Fanelli

Approaching Computation

Achievement Level	Counting All	Counting On	Known Facts	Derived Facts
High Achieving	0%	9%	30%	61%
Low Achieving	22%	72%	6%	0%

Gray \& Tall, 1994

Expanded Form

Using Expanded Notation

$$
18=10+8
$$

Subtraction: Decomposition

Using Expanded Notation

$$
\begin{gathered}
18-9 \\
\\
10+8 \\
-(9+0)
\end{gathered}
$$

$$
1+8=9
$$

Subtraction: Decomposition

$(4+3)+2$

Subtraction: Decomposition

$7+2$

Subtraction: Decomposition

$(3+2)+4$

9

$5+4$

$$
-
$$

,
660
$0 \times 8 \omega^{9}$
$+$

5
e

1

 ' \qquad $=$

$-2+2$

armlets ?

$$
\square
$$

.
J
\square

 }
 \section*{Subtraction: Decomposition
 \section*{Subtraction: Decomposition

 , , -} -}
— 3

[1]

f
 I 1 .
 = .
\qquad
.
-2
\rightarrow
\square

\square
\square

$$
=2+2
$$

 -

E
$=$ 3
 . an
\qquad

 (
-
\qquad
\qquad

\qquad
\qquad
\qquad

0
\qquad

[^0][^1]路
$($

[^2]$$
=
$$

Subtraction: Decomposition

$$
18-9
$$

Using
Decomposition
instead of, or in
addition to,
Expanded
Notation

$$
\begin{array}{r}
(10+5+3) \\
-(9+0+0)
\end{array}
$$

$$
1+5+3=9
$$

Cain, Faulkner, \& Fanelli

Subtraction: Decomposition

18-9

$$
\begin{array}{r}
(5+5+5+3) \\
-(5+4+0+0)
\end{array}
$$

$$
0+1+5+3=9
$$

Subtraction: Decomposition

Expanded Notation doesn't get a student as far here.

Try other ways to decompose the number.

Cain, Faulkner, \& Fanelli

(s)

$$
=18
$$

(

'

Abstract

Abstract

(

$$
3+10+5=18
$$

$$
5
$$

-

0
x_{2}
0
\qquad
\qquad

4-
_
额
_
-

2
$-$
T
N

$$
\square
$$ (

$$
2
$$

$$
7
$$

$$
4
$$

$1-2$
0
\square T

\qquad
(

0
\square
-

$$
=
$$

\qquad
\qquad

Abstract

\section*{} $$
-
$$ $$
\begin{gathered} 25-7 \\ (10+10+5) \\ -(7+0+0) \end{gathered}
$$

(

\qquad

Subtraction: Decomposition
$25-7$
$\begin{aligned} \frac{(10+10+5)}{-(5+2+0)} \\ 5+8+5\end{aligned}$
$\begin{aligned} & 25-7 \\ &(10+10+5) \\ &-(5+2+0) \\ &(5+5)\end{aligned}$
$\begin{aligned} & 25-7 \\ &(10+10+5) \\ &-(5+2+0) \\ &(5+5)\end{aligned}$
$\begin{aligned} & 25-7 \\ &(10+10+5) \\ &-(5+2+0) \\ &(5+5)\end{aligned}$
$5+$

$\begin{aligned} & 25-7 \\ &(10+10+5) \\ &-(5+2+0) \\ &(5+5)\end{aligned}$
$5+$

$$
=18
$$

Abstract

$=$

$5+$
$\begin{aligned} & 25-7 \\ &(10+10+5) \\ &-(5+2+0) \\ &(5+5)\end{aligned}$

$$
\begin{gathered}
25-7 \\
(10+10+5) \\
-(5+2+0)
\end{gathered}
$$

Subtract i
$-(1$
37
保

$$
-1
$$

-

2
\qquad
\qquad
\qquad

-
|
$=$

$$
=18
$$

4

$$
5+8+5=18
$$

Abstract

Subtraction: Decomposition
$127-25$
((

\square

$$
100+0+2=102
$$

2
2

2
2 (
Subtraction: Decomposition
Subtraction: Decomposition

Subtraction:" Deconnoosition
Subtraction:" Deconnoosition

$$
1
$$

$$
5
$$

2
2
2
-
(

\square

$=$

$-$
\square
Subtraction:" Decomposition .
\qquad
\qquad
\qquad

$+$

$$
2
$$

$=$

$$
=
$$

$$
8
$$

$$
7
$$

Work Space

Subtraction: Keeping the Distance 12-9

Cain, Faulkner, \& Fanelli

Subtraction: Keeping the Distance

12-9

Move each number on the number line in order to make the computation easier.

Subtraction: Keeping the Distance

12-9

Number Line

 \section*{\title{
Subtraction：Keeping the
 \section*{\title{
Subtraction：Keeping the

 \square

 \square}

正正正正正正正

$$
\begin{array}{r}
\times 5 \\
-7 \\
\hline 8
\end{array}
$$

15
15
-7
-
i.

15
15
$-$

$$
1
$$

（

\qquad
\qquad
$+=$
$+$
 4 －

\qquad
－

\qquad

\qquad
\qquad －

－

－

\qquad
\qquad

$$
2
$$

Subtraction: Keeping the Distance

$$
15-7
$$

Move each number on the number line in order to make the computation easier.

Subtraction: Keeping the Distance

15-7

Number Line

Work Space

47

Subtraction: The Number Between

1. Choose a number that is in between the minuend and subtrahend.
2. Look to see how far the minuend is from that number.
3. Look to see how far the subtrahend is from that number.
4. Add those distances together to find the difference.

Subtraction: The Number Between

29-17

Original
Chosen \#
Distance from original to chosen number

$$
\begin{array}{r}
29 \longleftrightarrow 20 \\
-17 \longrightarrow 20
\end{array}
$$

Subtraction: The Number Between

29-17

12

170-145

$$
\begin{array}{ccc}
\text { Original } & \text { Chosen \# } & \begin{array}{c}
\text { Distance from original to } \\
\text { chosen number }
\end{array} \\
170 \longleftrightarrow 150 & 20 \\
-145 & \longrightarrow 150 & +\quad 5 \\
\hline 25
\end{array}
$$
 \title{

Subtraction: The Number
 \title{
Subtraction: The Number Between Between
 路

}

Work Space

52 Subtraction：Using the Correct
 \section*{\title{
52 Subtraction：Using the Correct
Base 10 Language
 \section*{\title{
52 Subtraction：Using the Correct
Base 10 Language

 52 Subtraction：Using the Correct
Base 10 Language

 52 Subtraction：Using the Correct
Base 10 Language

}}

Base 10 Language
 I

Base 10 Language

－ \qquad

Pase

－

\qquad

53
（2）
（2）
53

Subtraction：Using the Correct
（

 1

1

\author{ \[\begin{array}{r} 125
-\quad 13
\hline \end{array} \]

$-$

 }

}

}
（as）

（as）
正

．

，

（as）

－

？

——?

$$
=
$$

$$
=
$$

$$
0
$$

$$
\underline{1}
$$

$$
=
$$

－
$\begin{array}{ll}1 & \\ \text { に } & \text { ふ } \\ \omega & \ddots\end{array}$
$\left\lvert\, \begin{array}{ll}1 \\ 1 & \text { N } \\ \text { ぃu N }\end{array}\right.$

nory
\qquad
（as）

\qquad
\qquad

$$
1
$$

$$
\pm
$$

\qquad＝路

Abstract

rese $=$ ， \qquad
\qquad

（as）
\qquad
（2）
4）
tr

1
\qquad

\square
里

\qquad
\qquad

L
\qquad

$$
-
$$

$$
2
$$

"

Subtraction: Using the Correct Base 10 Language

Cain, Faulkner, \& Fanelli

Subtraction: Using the Correct Base 10 Language

Cain, Faulkner, \& Fanelli

Subtraction: Using the Correct Base 10 Language

Cain, Faulkner, \& Fanelli

Subtraction: Negatives | 17 |
| :---: |
| -9 |
 Subtraction: Sega 17 -9
 Subtraction: Vega $\begin{gathered}17 \\ -9\end{gathered}$

 Subtraction: Nega 17 $\frac{-9}{}$
 Subtraction: Mega 17 $\frac{-9}{1}$
 Subtraction: Nega $\begin{gathered}17 \\ -9 \\ \end{gathered}$
 Subtraction: Nega $\begin{gathered}17 \\ -9 \\ \end{gathered}$
 Subtraction: Nega $\begin{gathered}17 \\ -9 \\ \end{gathered}$
 \square
 (
 Subtraction: Negatives
 Subtraction: Sega $\begin{gathered}17 \\ -9 \\ -\end{gathered}$

 Subtraction: Neg 17 $\frac{-9}{--}$

 Subtraction: Nega $\begin{gathered}17 \\ -9 \\ -\end{gathered}$
 Subtraction: Nega $\begin{gathered}17 \\ -9 \\ -\end{gathered}$
 -
 $-$
 -

 ,
 -
 1
 ,
 I
 \qquad

 (
 \rightarrow

 \qquad -
 \qquad
 \qquad
 \qquad

\title{

}

\square

\qquad

$$
\begin{array}{r}
17 \\
-9 \\
\hline-2
\end{array}
$$

Subtraction: N
$\begin{array}{r}17 \\ -9 \\ -2\end{array}$ 58

Abstract

,

187
-9
-2 , -

[^3]
-
$$
\square
$$

$$
-
$$

Subtraction: Negatives

$$
\begin{gathered}
17 \\
-9 \\
\hline 10+(-2)
\end{gathered}
$$

17
-9
$10+(-2)$

(s)
+
)

Subtraction: NeO
17
$\frac{10+(-2)}{10+9}$
(

 ,

\square
$\begin{array}{r}17 \\ -9 \\ \hline 10+(-2)\end{array}$

$-2+-a+\infty$

$$
e_{1}
$$

_ - -

1
$+\frac{10}{2}$
\qquad
, \qquad
\qquad
\qquad
\qquad
\qquad
-

1

17

$+$

$=--1$

I
\qquad
\qquad
\qquad
\qquad
-1

.

$$
\omega
$$

\qquad
\qquad

4
\qquad

$$
\begin{gathered}
\frac{17}{-9} \\
\hline 10+(-2)=8 \\
17 \\
-9 \\
\hline 8
\end{gathered}
$$

(2020)

$+\frac{1}{4}$
(2020)

2
E

$=$
\qquad
-
-
\square
\qquad
\qquad

-
,
1 \qquad
\qquad
$=$
\qquad

$$
\begin{gathered}
\text { Subtraction: Negatives } \\
17 \\
-9
\end{gathered}
$$

$$
=
$$

\square
,
\square

Abstract

Abstract

\qquad
\qquad

$$
7
$$

61
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

(20)

(20)

61

Abstract

(20)
(208

(20)
(20)

er

61
61
\qquad
\square
回

$$
-
$$

\square

(

-

(7)

\qquad

1

Abstract

(72)

Math "Facts" vs. Subtraction within 20

- U.S. deals with problems like 12-5, 15-7, etc., as FACTS to be memorized.
- It does help to have these memorized, however, PEDAGOGICALLY, there's more to it.
- Chinese teach these "facts within 20 " as the entry point for understanding our number system (develop "number sense", emphasize base ten system)

$$
\begin{array}{ll}
16-4 & 14-7 \\
12-8 & 17-3 \\
13-5 & 19-9
\end{array}
$$

-
 \section*{Develop an Understanding of Base 10
 \section*{Develop an Understanding of Base 10 and Equal Exchange and Equal Exchange
 }
-

$$
18-9 \quad 15-6
$$

\qquad
\qquad
\qquad
 \title{
Know what you are teaching!
 \title{
Know what you are teaching!
 - 15-8 "Number Fact" (Automaticity)
 - 15-8 "Number Fact"(Automaticity)
 - 15-8 Unlocking the Number System

 -
 aching!
} aching!
}

\qquad

 -

|

-

-
\qquad
\qquad
\qquad -1

\qquad

.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
v er
-

Language Tips: Subtraction within 20

- Standard Form and Ones Form
- Equal refers to value
- A ten rod is not the same as ten ones
- Chinese language: "1 ten 2 ones"
- Mathematicians evaluate the form (e.g., "Is this the form I want my value in?")

Prototype for Lesson Construction

V. Faulkner and DPI Task Force adapted from Griffin, 2003

© 2007 Cain/Doggett/Faulkner/Hale/NCDPI

Language, Reading and Mathematics

Connections and Disconnections
d. 3 ones and 2 ones
d. 3 tens and 2 tens
d 3 tens and 2 ones
d. $3 / 6$ and $2 / 6$
d $3 / 6$ and $2 / 5$
d. 3 ones and 2 ones
d. 3 tens and 2 tens
d. 3 tens and 2 ones
d) $3 / 6$ and $2 / 6$
d $3 / 6$ and $2 / 5$

Concrete Reality

$8-5=8$

$$
7-4=7
$$

Cain, Faulkner in Teaching Children Mathematics

Faulkner in Teaching

Valerie N. Faulkner

In recent years much attention has been placed on the relatively poor math performance of students in the United States (Gonzalez et al., 2004; Lemke et al., 2004; National Center for Education Statistics, 1999; National Research Council, 2001). Increased attention has also been paid to the
struggling leamer and mathemtics struggling learner and mathematics.
This includes issues regarding assess ment (Gersten, Clarke, \& Jordan, 2007) low-performing students in reform-low-performing students in reform\& Olson, 2001); and general recommendations for the struggling student by the National Math Panel (Gersten et al., 2008).
The mathematical knowledge of teachers has also been investigated, and student success has been tied to
the subtle factors of teacher implemen nhe subtue factors of teacher implemen
tation choices regarding problem sets, questioning techniques, and math connections (Hiebert \& Stigler, 2000; Hill, Rowan, \& Ball, 2005; Stigler \& Hiebert,

Number Sense and Instructional Practice At the heart of the recent focus on mathematics has been an increase
emphasis on developing students' number sense. Ironically, although growing as a force in the education erature, number sense has not bee
clearly defined for teachers :learly defined for teachers.
Teachers need specific support Teachers need specific support
understanding how to develop nu sense in students, to guide their le ing as they plan for and provide instruction (Ball \& Cohen, 1996) a ultimately, to ensure that they are spending time encouraging studen
do the thinking that will improve do the thinking that will improve,
ber sense. A focus on content kno ber sense. A focus on content kno
edge has been found to be an effe edge has been found to be an effe
component of professional develo component of professional develop
ment for teachers (Garet, Porter, Desimone, Birman, \& Suk Yoon, 2 Hill et al., 2005), and teacher cont
knowledge in mathematics has an knowledge in mathematics has an
impact on student performance (H) impact on student performance (H
to make the numeration system more clear to h so she spoke to the class about equality and th dents to tell her how these two forms of a number are equal. The class had a very hard time explaining the reason why the two forms of the number were equal.

Next, she had asked the class to use the blocks to show her 45%. She asked, "This is 45% of what?"; the class just looked at her. She explained that cent means 100 as in century and, therefore, percent means per 100 . They were then able to articulate that 45% must be 45 out of 100 . Then she

Cain in
Teaching Exceptional Children

Are these the same?

$$
4+4=7+1
$$

Equality and Form of a Number

$3+4$

Connections and Disconnections

Oral Language

Reading and Writing

Mathematics

"This is all reading, when do we do the math EOG?"

They don't work!

We tell them—more means add

Erin has 46 comic books. She has 18 more comic books than Jason has. How many comic books does Jason have.

But is our answer really 64 which is $46+18 ?$

© 2007 Cain/Doggett/Faulkner/Hale/NCDPI

Universal Design for Learning Guidelines

Provide Multiple Means of Engagement
Purposeful, motivated learners
Provide options for self-regulation

+ Promote expectationsa nd beliefs that optimize motivation
+ Facilitate personal coping skills and strategies
+ Develop selfassessment and reflection

Provide options for sustrining effort
and persistence

+ Heighten salience of goals and objectives
+ Vary demandsa nd rescurces to optimize chalknge
+ Foster colblbora tion and community
+ Increase mastery-oriented feedback

Provide options for recruiting interest

+ Opt imize individual choice and auto nomy
+ Optimize releve nce, value, and authenticity
+ Minimise threats and distractions

Provide Multiple Means of

Representation
Resourceful, knowledgeable learners

Provide options for comprehension

+ Activate or supply baclground knowledge
+ Highlight pattems, critical features, big idess, and rebtiorehips
+ Guide information processing, vieualization, and manipulation
+ Maximize transfer and generalication
Provide options for language, mathematical expressions, and symbols
+Cl rity wocabulary and symbols
+ Clarily syntax and stucture
+ Suppor decoding of text, mathematial notation, and symbols
+ Promote understanding across languages
+ Illustrate through mukiple media

Provide options for perception

+ Offer ways of customizing the dipplay of information
+ Offer a hematives for auditory information
+ Offer a hematives for viaal information

Provide Multiple Means of

Action \& Expression

Strategic, goal-directed learners

Provid e options for executive functions

+ Guide appropriate goalsetting
+ Support planning and strategy development
+ Enhance appacity for monitoring progress

Provide options for expression
and communication

+ Use multiple medna for communication
+ Use multiple took for construction and composition
+ Build flencies with graduated levels of support for practice and performa nce

Provide options for physical action

+ Vary the methods for repponse and navigation
+ Optimne access to tools and assistive technologins

References:

Ball, Deborah (1992) "Magical Hopes: Manipulatives and the Reform of Math Education", American Educator, Summer 1992
Ball's Website: http://wwwpersonal.umich.edu/~dball/
Fuchs, Lynn "The Prevention and Identification of Math Disability

Faulkner, V. \& Dupree, S., (2010a). The Foundations of Algebra: Student Text and Teacher Resource Book. Portland, Maine: Walch Education.
Faulkner, V. \& Dupree, S., (2010b). Introduction to High School Mathematics: Student Text and Teacher Resource Book.
Using RTI", September 18, 2008 Presentation
Gersten, Russell, Clark, B, Jordan, N, Center on Instruction, "Screeningfor Mathematics Difficulties in K-3 Students" 2007.
Gersten, Russell, Jordan, N, Flojo, J., "Early Identification and Interventions for Students with Mathematical Difficulties", Journal of
Learning Disabilities, Volume 38, Number 4, July August 2005
Gickling, Edward, PhD, Instructional Assessment in Mathematics, March 2003, Presentation at Exceptional Children's Conference
Griffin, Sharon. (2003). Mathematical Cognition, Royer, ed. Greenwich, CT.: Infoage Publishing.
Ma, Liping (1999) Knowing and Teaching Elementary Mathematics. Edison, NJ, Lawrence Erlbaum Associates.
Mayer, Richard (2003). Mathematical Cognition, Royer, Ed.. Greenwich, CT.: Infoage Publishing.
NCDPI - Foundations of Mathematics

[^0]:

[^1]: -

[^2]: -

[^3]: ## Subtraction: Negatives

