Making Sense of the Math Through Fractions

2020 - 1-hour presentation

Equals Mathematics

ablenet

Presented by: Chris Cain, Ed. D.
ccain@mhu.edu

PISA: Context

Program for International Student Assessment

USA ranked third in the OECD sample in per capita GDP

USA ranked fourth in the OECD sample in per student spending

The share of students from disadvantaged backgrounds is within the average range of the OECD sample

PISA: Results

Program for International Student Assessment

The USA average score was $27^{\text {th }}$ out of 34 countries*

*of OECD participating countries

NAEP: 2015

National Assessment of Educational Progress

Percentage at or above Proficient
Grade 4
Grade 8

National Center for Educational Statistics, 2015

TIMSS

Trends in International Mathematics and Science Study

US Teachers

Hong Kong, Singapore, Japan

Learning terms and practicing procedures

Covers 80% of tested topics

Mile wide, inch deep

How can I teach my students to get the answer to this problem?

Instruction
al focus

Pace

Curriculum

Teachers
plan by asking...

Structured problem solving

About half the tested topics

Greater depth and coherence

How can I use this exercise to teach mathematics they don't already know?

International Research

TIMSS Video Studies

- 1995 Video Study
- Japan, Germany, US
- Teaching Style Implicated
- 1999 Video Study
- US, Japan, Netherlands, Hong Kong, Australia, Czech Rep.
- Implementation Implicated

Workspace

High Achieving Countries MAKE CONNECTIONS

United States TEACHES PROCEDURES

Structures and Connections

What is $4^{2} ?$

Procedure versus Structure/Connections
Make a square out of your 4 unit linear side

Workspace

Exponents and CONNECTIONS

Pythagorean Special Triangles Trigonometry

Connections

4^{2}

$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Understanding and Instruction

We can only instruct our students as well as we understand the mathematics:

The better we understand the math, the better decisions we will make regarding what the student needs to achieve and how to instruct the student!

Defining Issue in Implementation

...is the teacher's OWn understanding of Mathematics.

Liping Ma (1999)

What does it mean to divide

$$
6 / 2=?
$$

$$
\begin{aligned}
& \text { Consider 6 } \div 2 \\
& \frac{6 \mathrm{cups}}{2 \text { cups }}=3 \text { servings } \quad \frac{6 \mathrm{cups}}{2 \text { servings }}=\begin{array}{c}
3 \mathrm{cups} \\
\text { serving }
\end{array}
\end{aligned}
$$

Partitive/Unit Rate

Connection to Language / Units

d. 3 ones and 2 ones
d. 3 tens and 2 tens
© 3 tens and 2 ones
d) $3 / 6$ and $2 / 6$
d $3 / 6$ and $2 / 5$

Knowing and Teaching

Elementary Mathematics (Liping Ma)

- Compared and contrasted the pedagogy of Chinese and American teachers
- Found that American teachers were much weaker in content and conceptual knowledge
- Found American teachers teach procedurally rather than being driven by the logic of the mathematics (implementation)
- Ma presented information through teacher responses to elementary math questions

Problem \#3 Division of Fractions

$13 / 4$ divided by $1 / 2$
Give a Story Problem to show what is happening with this expression.

Division of Fractions Lesson Construction

V. Faulkner and NCDPI Task Force adapted from Griffir,

Division of Fractions

- American teachers' approach

- Flip and multiply

- Answers don't match
- Confused division by two with division by one-half

Division of Fractions

- Chinese teachers' approach
- Gave a mathematically accurate story problem
- Explained the mathematics behind the operation
- Gave multiple mathematical constructs for division of fractions

Division of Fractions

What does it mean to divide by a fraction?

Movie Time

For each Cup of BeansI get two portions if I divide by $1 / 2$

Workspace

What if I divide by $1 / 4$?

-How would my diagram look?

- How many portions would I have?
-Why are my number of portions getting larger?
- How does this idea of quantity tie into the math structure of proportional reasoning and repeated subtraction?

Bean Party \#2

Serving Size: $\quad 1 / 2$ cup of Beans
How many servings can be made from:

- 1 cup of beans
- 2 cups of beans
- $31 / 2$ cups of beans

Bean Party \#3

How many 2 cup servings can be made from:

- 8 cups of beans
- 5 cups of beans

-Which one is harder for students?
- What would the mathematical sentence look like?

What About Leftover Beans?

8 cups of beans $\div 2$ cup servings $=4$ servings of 2 cups each
9 cups of beans $\div 2$ cup servings $\neq 4$ servings remainder 1

Leftover Beans

9 cups of beans $\div 2$ cup servings $=$

4 servings of 2 cups AND 1 cup of a 2 cup serving

Leftover Beans

9 cups of beans $\div 2$ cup servings $=$

$4 \frac{1}{2}$ groups of 2 or $41 / 2$ servings

Division of Fractions: Bean Party! Division as Repeated Sųbtraction

V. Faulkner and DPI Task Force adapted from Griffin

Cain, Faulkner in Teaching Children Mathematics

Faulkner in Teaching Exceptional Children

Designing Challenging Curriculum
 The Components of Number Sense An Instructional Model for Teachers

To help children understand the concrete concept that an abstract orthographic symbol represents, let's apply the same motives we use for teaching background knowledge in reading.

How the Components of Number Sense Affected One Middle School Math Teacher

Dr. Chris Cain

As teacher educators, we have prioritized providing teachers with a tool that will substantially support their efforts to change their daily habits of language and instruction. We feel strongly that research must be made accessible to teachers so that they can effect change in their classrooms. It is our contention that this Model for Number Sense does just that.

One such example came in the college class, Advanced Methods of Mathematics Instruction. One of the participants in the class was a middle school teacher who had returned
to make the numeration system more clear to h so she spoke to the class about equality and th dents to tell her how these two forms of a number are equal. The class had a very hard time explaining the reason why the two forms of the number were equal.

Next, she had asked the class to use the blocks to show her 45%. She asked, "This is 45% of what?"; the class just looked at her. She explained that cent means 100 as in century and, therefore, percent means per 100 . They were then able to articulate that 45% must be 45 out of 100 . Then she

Cain in

Teaching Exceptional Children

Number Sense and At the heart of the recent focus on At the heart of the recent focus on
mathematics has been an increase emphasis on developing students' number sense. Ironically, although growing as a force in the educatio erature, number sense has not bee
clearly defined for teachers. clearly defined for teachers.
Teachers need specific support Teachers need specific support
understanding how to develop nu sense in students, to guide their le ing as they plan for and provide instruction (Ball \& Cohen, 1996) a ultimately, to ensure that they are spending time encouraging studen do the thinking that will improve, edge has been found to be an effe component of professional develo component of professional develop
ment for teachers (Garet, Porter, Desimone, Birman, \& Suk Yoon, 2 Hill et al., 2005), and teacher cont knowledge in mathematics has an
impact on student performance (H impact on student performance (H

Valerie N. Faulkner
In recent years much attention has been placed on the relatively poor
math performance of students in the United States (Gonzalez et al., 2004; Lemke et al., 2004; National Center for Education Statistics, 1999; National Research Council, 2001). Increased attention has also been paid to the
struggling learner and mathematics. struggling learner and mathematics.
This includes issues regarding assessment (Gersten, Clarke, \& Jordan, 2007); low-performing students in reform-low-performing students in reform-
based classrooms (Baxter, Woodward, \& Olson, 2001); and general recommendations for the struggling student by the National Math Panel (Gersten et al., 2008).
The mathematical knowledge of teachers has also been investigated,
and student success has been tied to and student success has been tied to
the subtle factors of teacher implementation choices regarding problem sets, questioning techniques, and math conquestioning techert \& Stigle, 2000; Hill,
nections (Hieber Rowan, \& Ball, 2005; Stigler \& Hiebert,

Are these the same?

Equality and Form of a Number

$$
1 / 2=3 / 6
$$

Pumpkin Pie

Computation with Fractions: Modeling with Fraction Strips

$$
\frac{1}{3}
$$

$$
\begin{array}{llllll}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

Addition with Whole Numbers

1 apple + 1 apple
$=$
2 apples

Addition with Unit Fractions and Like Denominators

$$
\frac{1}{3} \text { 凸 } \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}
$$

$1 / 3+1 / 3 \quad 2 / 3$

Adding with Whole Numbers?

1 apple +
1 banana
2 banapples?

Addition of Fractions: Try

 This$$
\frac{1}{2}+\frac{1}{3}
$$

Addition with Unlike Denominators: Unit Squares?

Adapted from Lee Stiff

Finding a Common Unit

Adapted from Lee Stiff

Equivalent Fractions

- Fractions strips are equivalent when they have the same area
- Fractions are only equivalent when the unit whole is constant among them

Example

$$
1 / 4=2 / 8
$$

Multiplication of Whole Numbers:
 Equal Grouns Unknown Product
 2 * 3

There are 2 bags with 3 apples in each bag. How many apples are there in all?

Multiplication with a Whole Number and a Unit Fraction

$$
2 * 1 / 3
$$

$$
\frac{1}{3} \quad \frac{1}{3}
$$

There are 2 groups of $1 / 3$. How many $1 / 3$ are there in all?

What does it mean to multiply a fraction by a fraction?

Multiplication: Both Factors a Fraction

$$
1 / 4 * 1 / 2
$$

Multiplication: Commutative Property

$1 / 2$ * 1/4

Back to- Division with a Fraction

- $1 / 2 / 1 / 2=$
- $1 \frac{1}{2} / 1 / 2=$
- $3 / 1 / 2=$

Dividend and a Fraction Divisor

$\mathbf{2 / 3} \div \mathbf{2 / 1 2}$

$\frac{1}{3}$	$\frac{1}{3}$		
$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$

Division with a Fraction Dividend and a Fraction Divisor

$2 / 3 \div 3 / 12$

\[

\]

Implementation

- Teacher's discussion of the Mathematical Structure is critical.
- Deborah Ball has found that teacher knowledge affects student growth.

© 2007 Cain/Doggett/Faulkner/Hale/NCDPI

Universal Design for Learning Guidelines

Provide Multiple Means of Engagement
Purposeful, motivated learners
Provide options for self-regulation

+ Promote expectationsa nd beliefs that optimize motivation
+ Facilitate personal coping skills and strategies
+ Develop selfassessment and reflection

Provide options for sustrining effort
and persistence

+ Heighten salience of goals and objectives
+ Vary demandsa nd rescurces to optimize chalknge
+ Foster colblbora tion and community
+ Increase mastery-oriented feedback

Provide options for recruiting interest

+ Opt imize individual choice and auto nomy
+ Optimize releve nce, value, and authenticity
+ Minimise threats and distractions

Provide Multiple Means of

Representation
Resourceful, knowledgeable learners

Provide options for comprehension

+ Activate or supply baclground knowledge
+ Highlight pattems, critical features, big idess, and rebtiorehips
+ Guide information processing, vieualization, and manipulation
+ Maximize transfer and generalication
Provide options for language, mathematical expressions, and symbols
+Cl rity wocabulary and symbols
+ Clarily syntax and stucture
+ Suppor decoding of text, mathematial notation, and symbols
+ Promote understanding across languages
+ Illustrate through mukiple media

Provide options for perception

+ Offer ways of customizing the dipplay of information
+ Offer a hematives for auditory information
+ Offer a hematives for viaal information

Provide Multiple Means of

Action \& Expression

Strategic, goal-directed learners

Provid e options for executive functions

+ Guide appropriate goalsetting
+ Support planning and strategy development
+ Enhance appacity for monitoring progress

Provide options for expression
and communication

+ Use multiple medna for communication
+ Use multiple took for construction and composition
+ Build flencies with graduated levels of support for practice and performa nce

Provide options for physical action

+ Vary the methods for repponse and navigation
+ Optimne access to tools and assistive technologins

Ball, Deborah (1992) "Magical Hopes: Manipulatives and the Reform of Math Education", American Educator, Summer 1992
Ball's Website: http://wwwpersonal.umich.edu/~dball/
Fuchs, Lynn "The Prevention and Identification of Math Disability

Faulkner, V. \& Dupree, S., (2010a). The Foundations of Algebra: Student Text and Teacher Resource Book. Portland, Maine: Walch Education.

Faulkner, V. \& Dupree, S., (2010b). Introduction to High School Mathematics: Student Text and Teacher Resource Book.
Using RTI", September 18, 2008 Presentation
Gersten, Russell, Clark, B, Jordan, N, Center on Instruction, "Screeningfor Mathematics Difficulties in K-3 Students" 2007.
Gersten, Russell, Jordan, N, Flojo, J., "Early Identification and Interventions for Students with Mathematical Difficulties", Journal of
Learning Disabilities, Volume 38, Number 4, July August 2005
Gickling, Edward, PhD, Instructional Assessment in Mathematics, March 2003, Presentation at Exceptional Children's Conference Griffin, Sharon. (2003). Mathematical Cognition, Royer, ed. Greenwich, CT.: Infoage Publishing.

Ma, Liping (1999) Knowing and Teaching Elementary Mathematics. Edison, NJ, Lawrence Erlbaum Associates.
Mayer, Richard (2003). Mathematical Cognition, Royer, Ed.. Greenwich, CT.: Infoage Publishing.
NCDPI - Foundations of Mathematics

