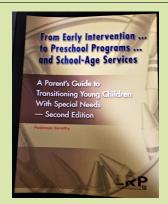
# EXPLORE, EXPERIMENT AND ENRICH WITH INQUIRY-BASED SCIENCE ACTIVITIES FOR YOUNG LEARNER






Padmaja Sarathy
Author & Educational Consultant
www.infinitepossibilities-sped.com

AbleNet University Webinar May 12<sup>th</sup>, 2020

## **Learning Objectives**

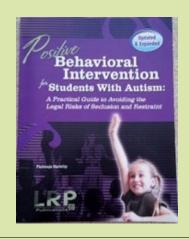

- ☐ This session will discuss how to create a learning environment that promotes curiosity, investigation, problem-solving and concept development in young children.
  - □ How to embed opportunities throughout the day as part of the daily routine to encourage children's questioning, exploration and to think critically.
  - ☐ How to integrate UDL strategies so that all children, including those with cognitive and communication needs can benefit and gain skills.
  - ☐ Use a variety of popular and colorful picture books to teach science and math concepts and engage children in hands-on activities.














#### Padmaja's Sarathy' Books and Publications

- □ Autism: Support Strategies & Interventions, Autism Seven Steps of Support; Music CD Transitions
- ☐ Behavior Guide (Preventive and Positive Approaches), Mindfulness Guide
- ☐ Early Childhood: Transition; Parenting Guide; Executive Function Early Years; and STEM Teaching Strategies
- ☐ Paraeducator Training Guide and DVD
- ☐ Severe and Multiple Disabilities; Significant Disabilities and ESSA













## **Cultivating Inquiry-based Thinking**

IUN68#idafe

Imagination

CRITICAL THINKING

**Explore** 

Problem Solving

**Asking Questions** 

Finding Answers

Creativity

Discovery

**Curiosity** 

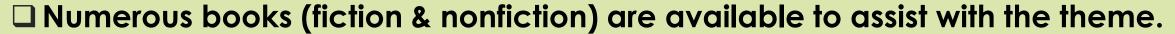
CREATIVE THINKING

## Science is <u>Inquiry</u>, <u>Problem-Solving</u> and <u>Discovery</u>

- □ Science "happens" all around us every day and you have endless opportunities to invite children into the wonders of science.
- Science is a systematic study of the structure and behavior of the physical and natural world through <u>observation</u> and <u>experiment</u>." i.e. how stuff works.
- □ Science involves:
  - Observing what's happening;
  - ☐ Classifying or organizing information;
  - ☐ Predicting what will happen;
  - ☐ Testing predictions under controlled conditions to see if they are correct; and
  - Drawing conclusions
- ☐ Children are natural learners—inquisitive, energetic, curious.
- Increase their thirst, curiosity and enjoyment related to discovery. Encourage love of exploration and experimentation.



- Make science exciting! Create hands-on science lessons so concepts come to life.
  - ☐ Provide objects for students to observe, conduct experiments and discover how things work. Make available magnets, bubbles, magnifying glass, Seeds, leaves and twigs and plants growing
- □ Circle-Time: Integrate science with literacy activities. Build vocabulary skills and science knowledge.
- ☐ **Center-time:** Embed science into centers. Have children involved in conducting experiments. Set up a science discovery center. Showcase weekly displays of science information.
- ☐ Recess-time:
- Movement-time:
- ☐ Get parents involved (to pursue activities at home).




- Ensure application of UDL in into your design of the environment and delivery of instruction to promote <u>Access</u>, <u>Action and Expression and Engagement</u> of learners with diverse needs (http://www.udlcenter.org/):
  - Provide multiple, <u>flexible methods of presentation</u>. Information is presented in variety of formats, at different complexity levels and to address different learning styles.
  - □ Provide multiple, <u>flexible methods</u> of action and expression. Offer a variety of formats <u>flexible methods</u> for student to respond, navigate through information and activities and demonstrate what he/she knows.
  - □ Provide multiple, <u>flexible</u> options for engagement. Various opportunities are provided to engage student's interest, offer appropriate challenges, increase motivation and gain student response.

# Enrich & Explore: Build Science Knowledge Let's Begin with Animals – A Natural Draw for Kids



- ☐ Learn about animal characteristics.
  - ☐ Physical and behavioral characteristics.
- ☐ Learn about Classification of Animals.
  - ☐ Mammals, Reptiles, Birds, Insects, Fish and Amphibians
  - Marsupials and Echidna



- ☐ Get children involved through questioning about their prior knowledge about animals. Provide props with photos, videos, models and puppets.
- Frame your questions from simple (yes/no or right/wrong responses) to complex (open-ended) questions to give every student to participate and respond (UDL framework).
- ☐ Engage them in a discussion that builds their science knowledge and relates to their own personal experiences with animals.



#### **Animal Pictures : Motivate and Capture Student Attention to Stimulate their Thinking**









Easy to Complex (Classification)
Animal Names, Characteristics, Habitat, Classification (mammal, reptile, bird, etc.)



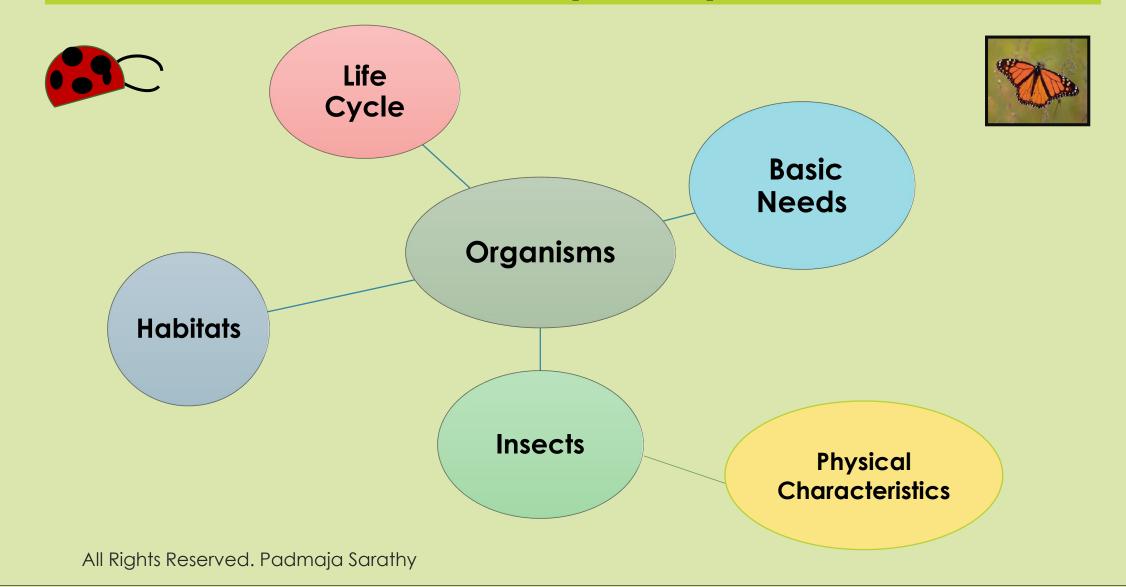






## Enrich & Explore: Build Science Knowledge

□ Rapidly name several animals or one in each category: ☐ Mammals, Reptiles, Amphibians, Insects, Fish & Birds. ☐ Where do the animals live? How do the animals move? What do the animals eat? Discuss food chain concept (as appropriate for age/grade level). □ Talk about how the dogs (or birds or cats) that you see are alike and different. Read stories that portray a dog, a cat, and a bird. Observe pigeons, squirrels, butterflies, ants or spider webs during recess. Have children play the charades game, role-playing different animals. Where do you find penguins? (Moderately challenging) Which are the two animals (mammals) that lay eggs? (Challenge question) □ Set up a animal facts discovery display. Have students select an animal of the week and display animal facts and student items.


## The Grouchy Ladybug by Eric Carle

- As you read the story, pause, to ask questions. Which animal is bigger the ladybug or the other animals (praying mantis or hyena or sparrow or whale?)
- Discuss the characteristics of the various animals from the story.
- Classify the animals into 4 categories as a follow-up activity.
- Role-play the animal characters from the story for your Movement time.

| Mammals                    | Reptiles        | Birds   | Insects               | Crustacean |
|----------------------------|-----------------|---------|-----------------------|------------|
| Skunk                      | Boa Constrictor | Sparrow | Ladybug               | Lobster    |
| Hyena                      |                 |         | Stag beetle           |            |
| Gorilla                    |                 |         | <b>Praying Mantis</b> |            |
| Rhinoceros                 |                 |         | Aphids                |            |
| Elephant                   |                 |         |                       |            |
| Blue Whale (Marine mammal) |                 |         |                       |            |

Challenge Question: Which animal is in the endangered species (list)?

## **Concept Map**



## Get Children Exploring and Researching.

- Let each student choose an animal to do further research: its characteristics, its structural and behavior adaptations to fit into the environment (at a higher complexity level), etc.
  - ☐ Adapt it to the student grade level, functioning level. Provide props.
  - □ Facilitate a diversity of approaches and products corresponding to the student functioning level One animal picture with one detail about it to creating a book or a power point with multiple details. Provide a template and an example.









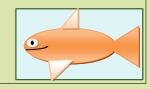


Link it with 'The Very Busy Spider'



## **Animals - Inquiry-based Questioning**




Jump Frog, Jump by Robert Kalan serves as an example.

- Ask multi-level questions to offer opportunities for all children to be included and feel successful in the story-discussion. Sample questions to provoke thinking:
- □ Have you ever seen a frog? Where would you see a frog? Where else can you see a frog?
- □ Is the frog a big animal or a small animal? In comparison to what other animal?
- ☐ Think of some other animals that live in water?
- ☐ Why is frog an amphibian? How is it different from a reptile?
- ☐ Can you have a frog as a pet? Why not?

**Make A Movement Poem** 

Jump, Frog Jump! Swim, Fish, Swim! Slither, Snake, Slither! Crawl, Turtle, Crawl!

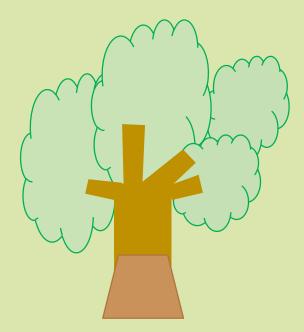




#### Animal Theme and Science Focus Picture Books

#### Books for literacy lessons and to grow science knowledge

- Brown Bear, Brown Bear by Bill Martin (animal names, animal facts)
- **The Mitten** by Jan Brett (animal names, animal facts, winter and also seasons, weather, etc.)
- Are You My Mother? by P.D. Eastman (birds and other animals)
- Jump Frog, Jump! by Robert Kalan (animals reptiles, amphibians, fish, and animal movement)
- The Very Busy Spider by Eric Carle (Arachnid, farm animals)
- The Grouchy Ladybug by Eric Carle (animals, animal classification, Emotions-feelings)
- <u>Swimmy</u> by Leo Lionni (Fish, animal facts, problem solving,)
- <u>The Wide-Mouthed Frog</u> by Keith Faulkner
- Barnyard Dance by Sandra Boynton
- Aesop's fables by Aesop (Retold by number of authors)
- <u>Clifford</u> by Don Freeman (several books)
- National Geographic Kids (Multiple picture books): Ants, Butterflies, Baby Animals, & many more.
- **Bugs are Insects** by Anne Rockwell (Let's Read and Find Out Science Series)

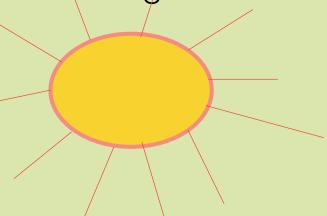

## Participant Poll with Detailed Questions

- ☐ Do you incorporate science activities into your daily routine?
- Do you have a science center with activities for children to investigate and explore?
- □ Do you perform hands-on science experiments with your students regularly, say weekly or bi-weekly?
- ☐ Do you integrate science into your language lessons?
- ☐ Do you play science vocabulary games?
- ☐ Do you blend movement activities with science concepts?

## Our Natural World - Inquiry

Tree Life Cycle: How do trees grow (how do **Tree Products:** they begin)? What do we Seed **Kinds of Trees:** get from trees? What kind of trees Wood are there? Tree Banana Apple Trees are home to...? **Trees and Children** Birds How do trees help children? Insects Play in the shade Swing Tree-house

Connect it with
the story of
'The Giving Tree'
By
Shel Silverstein




A Seed Is a Promise by Claire Merrill

Another book suggestion

## Enrich & Explore: Build Science Knowledge The Solar System – Sun, Moon, Earth, Planets and the Stars

☐ Teaching about the solar system and earth's place.



- Sun is at the center of the solar system.
- Sun is extremely hot.
- Sun gives us our light and heat.
- Eight planets orbit around the sun.
   A good rhyme to help you remember planets is: My Very Enthusiastic Mother Just Served Us Noodles!

Helpful resource- Planet for kids:

https://www.planetsforkids.org/how-hot-is-the-sun.html

Mercury

**Venus** 

**Earth** 

Mars

Jupiter

Saturn

**Uranus** 

**Neptune** 

Milky Way galaxy



- Earth is a the third planet from the sun.
- From space it looks mostly blue.
- Oceans cover 71%.
- 93 million miles from the sun.
- Moon is the earth's only satellite.

## Act it to Make Drama



<u>Drama Integrated with Science and Literacy: The Concept of "Orbit"</u>

<u>Combine it with the story of 'Papa, Please Get the Moon for Me' by E. Carle</u>

- Assign different roles to students: Playing the roles of <u>Sun, Earth and Moon</u>.
- □ Give each character (the students) a prop representing their role (Sun, Earth and Moon). Students can make props out of paper plates and paint them with different colors to represent <u>Sun</u>, <u>Earth and Moon</u>.
- Act out the "Orbit" by having Earth orbiting (circling) around the Sun and the Moon orbiting (circling) around the Earth to demonstrate the concept of "Orbit" and the relationship between <u>Sun</u>, <u>Earth and Moon</u>. A non-ambulatory student could play the <u>Sun</u>. Others can activate a device to play the script or play a theme music. Some can be stars in the sky and another can be the sky. Rotate roles.
- Use <u>AT voice output devices and props</u> to aid the 'role play & drama' presentation.
  Connect it with the book,

## **Experiment - Make Predictions**

- □ **Create a ramp** with a cardboard box or wooden board. Place objects with different shapes and materials at the top. Have students make a prediction about each object.
  - What will happen? What they do on the ramp?
  - ☐ Some might roll. Some might slide. Some might not move at all!
  - ☐ Talk about the attributes of objects that roll and those that slide.

#### ☐ Magnet Activity:

Have your students experiment with a number of items – paper clips, scissors, pencil/crayon, a metal spoon, a plastic spoon, etc. to see if the magnet will attract or repel the item.



#### **Magnet Attracts**

Magnet attracts paperclip because it contains iron.

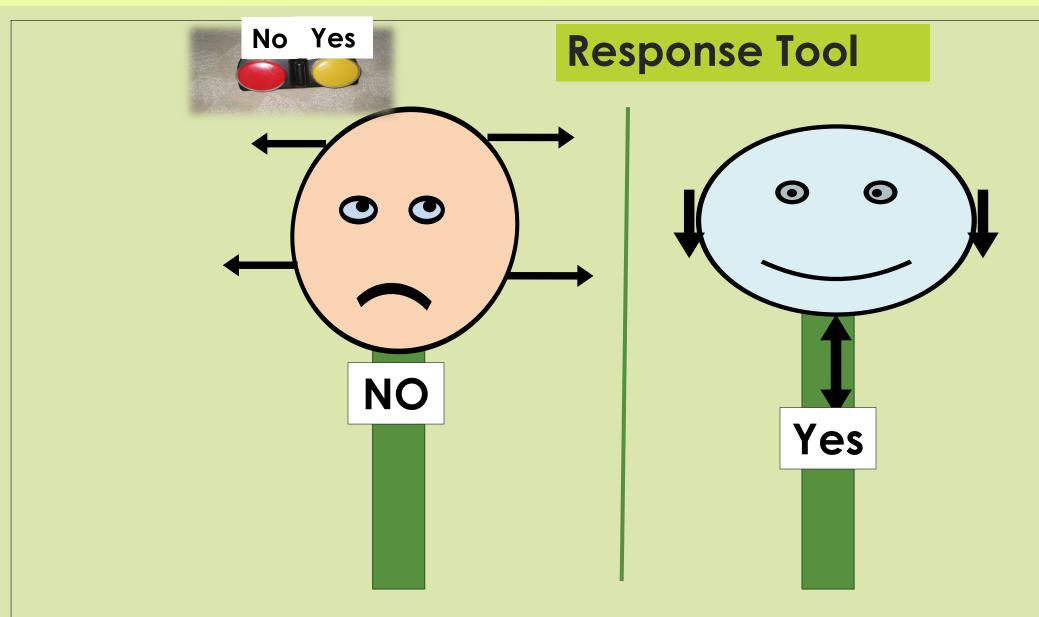
#### **Magnet Repels**

Magnet repels paper because it does not contain iron.

## **Experiment - Make Predictions**

- Make a barge with a 6-inch square of tinfoil. Fold up the edges on all 4 sides and pinch the corners to make a good seal.
  - Place the boat in water to see if it stays floating.
- ☐ Conduct an experiment to find out which objects float and which sink and find out why.
  - What happens…if paper is put in water; metal spoon is put in water; sugar is put in water.
- Ask questions about their observations.
  - □ Can you explain what happened?
  - What do you think caused that to happen?

## Ask... What If Questions.


#### Cause and Effect and Making Predictions

- What will happen if you add a drop green food coloring to a glass of water?
- ☐ What will happen to a balloon if we poke it with a pin?
- ☐ What will happen to yellow paint if we mix it with red?
- ☐ What could happen if it did not rain for a month?
- ☐ What could happen if it rained heavily for a whole week?
- ☐ What if all the water dried up in the lakes, rivers and oceans...
- ☐ What if the temperature increased and the world got hotter...

## **Experiment and Explore**

- Learn about a volcano: Discuss the appearance and color of the volcano. Show images of a volcano and how it erupts and the lava flows from it. (Explain that when a volcano erupts, it has hot lava flowing).
- ☐ For good sources of photo images and videos of volcanoes, go to: National Geographic for Kids website at <a href="http://kids.nationalgeographic.com//">http://kids.nationalgeographic.com//</a>
- Another website focusing on weather concepts is: <a href="www.weatherwizkids.com">www.weatherwizkids.com</a>. YouTube videos of volcanoes are also available besides colorful science books focusing exclusively on volcanoes.
- Make a volcanic eruption: Make a make-believe volcano adding baking soda and vinegar to a cup of water.
  - □ Students will observe that it bubbles-up (fizzles).
  - ☐ Give each one of them to conduct the fun experiment.

## Personalized Student-specific Supports ☐ Apply Universal Design for Learning principles. ☐ Use **object representations or picture cues as supports** to assist students with their responses. ☐ Ask questions ranging from easy to higher complexity levels to provide opportunities for all children to be able to respond. ☐ Provide invisible support. ■ Enable students to respond given 2 or 3 choices. ☐ Build in **transition activities** (movement activities, games, songs, etc.) to sustain student motivation and attention. ☐ Offer additional opportunities to take short breaks for children who appear restless and fidgety. ☐ Stoke positively. Make encouraging comments ☐ Use AT supports. All Rights Reserved. Padmaja Sarathy



Some may respond with a Response-Participation Tool.

## Visuals and AT Supports



Select/Choose
(A choice Board)

Magnet

Label

Microscope

Label

Object

Label

Object

Label

Science Vocabulary-building chart



<u>Italk2 Communicator</u> Enable Choice-making.

Talking Brix
Labeling & sequencing





Step by step
Step by step directions for the science experiment





Quick Talker and Super Talker
To promote communication, and
group participation and response



## Inquiry-based Science Learning in the Early Years



- Brain grows at the fastest rate in the early years neural connections (synapses) develop very rapidly at a rate of 1 million synapses per second.
- ☐ Pursue Inquiry-based hands-on science activities to build the brain.

**Foster Inquiry** 

**Cultivate Curiosity** 

**Promote Exploration** 

**Strengthen Attention** 

**Sustain Motivation** 

**Build Love for Learning** 



#### **Problem Solving Steps**

Define the Problem Explore Options

**Take Action** 

Look back to check if the solution is working.

## Science (STEM) - focused Books

| Title                                                              | Author                      | Age Range |
|--------------------------------------------------------------------|-----------------------------|-----------|
| My Five Senses                                                     |                             |           |
| If You Want To See A Whale                                         | Julie Fogliano              | 4-7       |
| 10 things I can do to help my world                                | Melanie Walsh               | 4-9       |
| Little Owl's Night                                                 | Divya Srinivasan            | 4-8       |
| What Lives In A Shell                                              | Kathleen Weidner Zoehfeld   | 4-8       |
| Running on Sunshine: How Does Solar Energy Work                    | Carolyn Cinami DeCristofano | 4-8       |
| The Doorbell Rang (mathematics)                                    | Pat Hutchins                | 4-8       |
| Robots (National Geographic Readers)                               | Melissa Stewart             |           |
| What Is The World Made of? All about solids, liquids, and gases    | Kathleen Weidner            | 4-8       |
| Awesome Engineering Activities for Kids                            | Christina Herkert Schul     | 5-10      |
| Claws, Coats and Camouflage: The ways animals fit into their world | Susan Goodman               | 6-11      |
| Asteroids, Comets, and Meteors                                     | Robin Kerrod                | 6-11      |
| Everything Kids Science Experiments Book                           | Tom Robinson                | 7-12      |

#### Resources

- □ Discover Engineering: <a href="http://www.discovere.org/">http://www.discovere.org/</a> At the Discover Engineering site, children can view videos, play interactive games, and design "Cool Stuff."
- ☐ Engineering is Elementary developed by the Museum of Science, Boston: <a href="https://info.eie.org/eie-k">https://info.eie.org/eie-k</a>
- □ National Science Teachers Association. (2014). NSTA position statement: Early childhood science education.
  - http://www.nsta.org/about/positions/earlychildhood.aspx
- □ NASA for Kids: (<a href="http://www.nasa.gov/audience/forkids/home/index.html">http://www.nasa.gov/audience/forkids/home/index.html</a>)
- □ National Geographic website <a href="http://kids.nationalgeographic.com/">http://kids.nationalgeographic.com/</a>
  - ☐ Offers a variety of books and videos on animals, and diverse science topics.
  - ☐ Watch the Volcano video in National Geographic site. https://www.youtube.com/watch?v=Xtkys3-T-Y8

## Resources

- □ Sarathy, P. (2017). <u>STEM Teaching Strategies for Young Learners</u>. Ed311, Austin, TX. (https://ed311.com/)
- ☐ ThinkFun: <u>www.thinkfun.com</u>
- ☐ The PBS site: http://pbskids.org/designsquad This PBS site, Design Squad, features creative activities, engaging video, interactive games, and exciting contests.
- ☐ The Khan Academy: <a href="https://www.khanacademy.org/">https://www.khanacademy.org/</a> The Khan Academy website offers a variety of math and science activities.
- ☐ Tools of the Mind: <u>www.toolsofthemind.org</u>
- □25 Amazing Virtual Field Trips: https://www.weareteachers.com/best-virtual-field-trips/



## THANKS.

# A special thanks to AbleNet University for hosting the webinar

Padmaja Sarathy Author and Consultant psarathy@earthlink.net www.infinitepossibilities-sped.com

The next webinar will be on August 6th - Part 1

Positive Approaches to Addressing Problem Behaviors of Students with Severe Disabilities

September 29<sup>th</sup> - Part 2